首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis,electrochemistry and IR spectroelectrochemistry of bisferrocenyl bridged benzene derivates
Authors:Peng Huang  Baokang Jin  Peng Liu  Longjiu Cheng  Wangxing Cheng  Shengyi Zhang
Institution:1. Department of Chemistry, Anhui University, Hefei, Anhui 230039, People’s Republic of China;2. Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, People’s Republic of China
Abstract:Two novel biferrocenylcarboxylate benzene derivatives, namely, 1,4-bis(2-Ferrocenecarboxylate) benzene (Fc2B) and 1,4-bis(2-Ferrocenecarboxylate)-2′-methylbenzene (Fc2M), have been synthesized. The as-prepared complexes have been confirmed by IR, 1H NMR and MS. The electron transfer mechanisms of the two compounds and the other three bisferrocenyl bridged benzene complexes, 1,4-disferrocenyl benzene (Fc2P), 1,4-bis(2-ferrocenylvinyl) benzene (Fc2E), and 1,4-bis(2-ferrocenylacetyleneyl) benzene (Fc2Q), have been studied by cyclic voltammetry (CV), in situ difference FT-IR (SNFTIR), and rapid-scan time-resolved FT-IR spectroelectrochemistry (RS-TRS FT-IR). The CV results suggest that the redox formal potentials of the five bridged complexes are depended on their bridged groups and abilities of withdrawing electron. IR absorption peaks arisen from intermediate appearance and disappearance in the oxidation and reduction process of Fc2B, Fc2E, Fc2P and Fc2Q were clearly observed by the in situ rapid-scan or SNFTIR spectroelectrochemistry. The results indicated the redox process of the four bisferrocenyl bridged benzene complexes involved two consecutive one-electron steps. Although the intermediate peak of Fc2M was not observed by in situ FT-IR spectroelectrochemistry, we still thought the redox process of Fc2M could involve two consecutive one-electron steps.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号