首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The influence of CaF2 content on the physical properties and apatite formation of bioactive glass coatings for dental implants
Authors:Ahmed Al-Noaman  Simon CF Rawlinson  Robert G Hill
Institution:1. Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Dental Physical Sciences Unit, Mile End Road, London E1 4NS, UK;2. Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Blizard Building, 4 Newark Street, London E1 2AT, UK
Abstract:This report details the physical properties, bioactivity and biocompatibility of manufactured glasses containing a range of calcium fluoride (CaF2) concentrations. Compositions were based on the following system: SiO2, CaO, Na2O, K2O, P2O5, ZnO and MgO, and in total seven glasses were synthesized using a melt–quench route. The ratio of the base compounds was kept constant, but had increasing CaF2 concentrations (0.00, 2.44, 4.77, 9.11, 10.33, 11.53 and 13.00 mol%). Glasses were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and dilatometery. Density was quantified according to Archimedes method and apatite formation tested following immersion in simulated body fluid (SBF) and Tris-buffer solution. Glass coatings were prepared by enamelling technique using 10 mm in diameter pure titanium disks. XRD demonstrates that all glasses are amorphous and that the sintering window, glass transition and softening temperatures decrease with increasing CaF2 content. In contrast, thermal expansion coefficient and glass density increase with CaF2 content. After 1 week immersion in SBF and Tris, XRD and Fourier transform infrared (FTIR) spectroscopy showed that the surfaces of all glasses underwent structural changes with evidence of surface apatite formation. Fluoride-electrode analysis indicates that the amount of fluoride released was proportional to the original CaF2 content. The survival and growth of osteoblasts on the surface of these glasses is consistent with biocompatible characteristics.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号