首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism of alkene isomerization by bifunctional ruthenium catalyst: A theoretical study
Authors:Jingcong Tao  Fengshen Sun  Tao Fang
Institution:Department of Information Engineering, Laiwu Vocational and Technical College, Laiwu, 271100, PR China
Abstract:The molecular mechanism of the isomerization of 1-pentene to form (E)-2-pentene catalyzed by the bifunctional ruthenium catalyst has been investigated using density functional theory calculations. The reaction is likely to proceed through the following steps: 1) the β-H elimination to generate the ruthenium hydride intermediate; 2) the reductive elimination of the hydride intermediate to generate the nitrogen-protonated allyl intermediate; 3) the transportation of the hydrogen by the dihedral rotation with Ru–P bond acting as axis; 4) the oxidative addition to afford another hydride complex; 5) the reductive elimination of the hydride intermediate to form the C2-C3 π-coordinated agostic intermediate; 6) the coordination of the nitrogen to the ruthenium center to give the final product. The rate-determining step is the oxidative addition step (the process of the hydrogen moves to ruthenium center from the nitrogen atom) with the free energy of 31.2 kcal/mol in the acetone solvent. And the N-heterocyclic ligand in the catalyst mainly functions in the two aspects: affords an important internal-basic center (nitrogen atom) and works as a transporter of hydrogen. Our results would be helpful for experimentalists to design more effective bifunctional catalysts for isomerization of a variety of heterofunctionalized alkene derivatives.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号