首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A family of diruthenium compounds with dianionic tridentate ligands of N-(2-pyridyl)-2-oxy-5-R-benzylaminate (R = H, Me, Cl, Br, NO(2)): isolation, structure determination, and electrochemistry
Authors:Miyasaka Hitoshi  Izawa Toru  Sugiura Ken-Ichi  Yamashita Masahiro
Institution:Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-03, Japan. miyasaka@comp.metro-u.ac.jp
Abstract:The ligand substitution reaction of Ru(2)(O(2)CCH(3))(4)Cl with 5-substituted N-(2-pyridyl)-2-oxy-5-R-benzylaminate (R = H, Me, Cl, Br, NO(2)) resulted in a family of anionic diruthenium species of Ru(2)(O(2)CCH(3))(2)(R-salpy)(2)](-) that were isolated by using Na(+)- or K(+)-18-crown-6-ether as the countercation: A(18-crown-6)(S)(x)()]Ru(2)(O(2)CCH(3))(2)(R-salpy)(2)] (A = Na(+), K(+); S = solvent; R = H, 1; Me, 2; Cl, 3; Br, 4; NO(2), 5). All compounds were structurally characterized by X-ray crystallography. The structural features of the anionic parts are very similar among the compounds: two acetate and two R-salpy(2)(-) ligands are, respectively, located around the Ru(2) unit in a trans fashion, where the R-salpy(2)(-) ligand acts as a tridentate ligand having both bridging and chelating characters to form the M-M bridging/axial-chelating mode. Compounds 1 and 5 with K(+)-18-crown-6-ether have one-dimensional chain structures, the K(+)-18-crown-6-ether interacting with phenolate oxygens of the Ru(2)(O(2)CCH(3))(2)(R-salpy)(2)](-) unit to form a repeating unit, .K.O-Ru-Ru-O.], whereas 2-4 are discrete. Cyclic voltammetry and differential pulse voltammetry revealed systematic redox activities based on the dimetal center and the substituted ligand, obeying the Hammett law with the reaction constants per substituent, rho, for the redox processes being 127 mV for Ru(2)(5+)/Ru(2)(4+), 185 mV for Ru(2)(6+)/Ru(2)(5+), 92 mV for Ru(2)(7+)/Ru(2)(6+), and 179 mV for R-salpy(-)/R-salpy(2)(-). For 3, the singly oxidized and reduced species, Ru(2)(6+) and Ru(2)(4+), respectively, generated by bulk controlled-potential electrolyses were finally monitored by spectroscopy. The singly oxidized species can also be slowly generated by air oxidation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号