Photophysical study of 3-acetyl-4-oxo-6,7-dihydro-12H-indolo[2,3-a]quinolizine in biomimetic reverse micellar nanocavities: a spectroscopic approach |
| |
Authors: | Mallick Arabinda Haldar Basudeb Maiti Subhendu Bera Subhash Chandra Chattopadhyay Nitin |
| |
Affiliation: | Department of Chemistry, Jadavpur University, Calcutta 700 032, India. |
| |
Abstract: | Photophysical properties of 3-acetyl-4-oxo-6,7-dihydro-12H-indolo[2,3-a]quinolizine (AODIQ), a bioactive molecule, has been investigated in well-characterized, monodispersed biomimicking nanocavities formed by sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in heptane using steady-state and picosecond time resolved fluorescence and fluorescence anisotropy. The emission behavior of AODIQ is very much dependent upon the water/surfactant mole ratio (W), i.e., on the water pool size of the reverse micellar core. AODIQ exhibits a sharp decrease in fluorescence anisotropy with increasing W, implying that the overall motional restriction experienced by the molecule is decreased with increased hydration. Some of the depth-dependent relevant fluorescence parameters, namely, fluorescence maxima and fluorescence anisotropy (r), have been monitored for exploiting the distribution and microenvironment around the probe in the reverse micelles. Fluorescence spectral position and fluorescence quenching studies suggest that the probe does not penetrate into the reverse micellar core; rather it binds at the interfacial region. Quantitaive estimates of the micropolarity and microviscosity at the binding sites of the probe molecule have been determined as a function of W. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|