首页 | 本学科首页   官方微博 | 高级检索  
     

基于MEMS陀螺仪的随机误差分析
引用本文:曹慧芳,吕洪波,孙启国. 基于MEMS陀螺仪的随机误差分析[J]. 应用声学, 2016, 24(1): 60-60
作者姓名:曹慧芳  吕洪波  孙启国
作者单位:北方工业大学 机械与材料工程学院,北方工业大学 机械与材料工程学院,北方工业大学 机械与材料工程学院
基金项目:北京市教育委员会科技计划项目资助(KM201510009001)
摘    要:为了提高MEMS陀螺仪测量精度,减少随机误差的影响,对产生随机误差的噪声源及其随机误差模型进行了分析。通过分析MEMS陀螺仪自身结构的缺陷并且对其输出数据进行了相应的滤波处理与平稳性检验,确立了合适的误差模型并利用Kalman滤波进行误差补偿,验证了模型的有效性。同时运用Allan方差法对MEMS陀螺仪噪声项进行了分析,确定了影响MEMS陀螺仪测量性能的主要因素以及比较了滤波前后的各项噪声源系数,检验了滤波效果且实验结果证明误差模型显著提高了MEMS陀螺仪的测量精度。

关 键 词:MEMS陀螺仪;Kalman滤波;误差模型;Allan方差法
收稿时间:2015-07-19
修稿时间:2015-08-28

Analyses on Random Error Based on MEMS Gyroscope
LV Hong-bo and SUN Qi-guo. Analyses on Random Error Based on MEMS Gyroscope[J]. Applied Acoustics(China), 2016, 24(1): 60-60
Authors:LV Hong-bo and SUN Qi-guo
Affiliation:North China University of Technology College of Mechanical Engineering and Material,North China University of Technology College of Mechanical Engineering and Material,North China University of Technology College of Mechanical Engineering and Material
Abstract:A model was made in view of the MEMS gyroscope random error, which was applied to error compensation with the Kalman filter. And main noise sources that affect measurement accuracy were determined via Allan variance method. The correctness of the model was verified by data filtering, proper error model and error compensation of the MEMS gyroscope and the principle factors that affect the performance of MEMS gyroscope were confirmed with the analyses of MEMS gyroscope noise items and compared the coefficient of various noise sources before and after filtering using Allan variance method, the experimental results showed that error model significantly improved the precision of the measurement of MEMS gyroscope.
Keywords:micro-electro-mechanical systems(MEMS) gyroscope   Kalman filter   error model   Allan variance
点击此处可从《应用声学》浏览原始摘要信息
点击此处可从《应用声学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号