首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Significance of redistribution reactions detected by in situ atomic force microscopy during early stages of fast scan rate redox cycling experiments at a solid 7,7,8,8-tetracyanoquinodimethane-glassy carbon electrode-aqueous (electrolyte) interface
Authors:Marco F Suárez  Alan M Bond  Richard G Compton
Institution:(1) Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK e-mail: richard.compton@chemistry.oxford.ac.uk, Fax: +44-1865-275410, GB;(2) Department of Chemistry, Monash University, Clayton, Victoria 3168, Australia, AU
Abstract:The reduction of solid 7,7,8,8-tetracyanoquinodimethane (TCNQ) at an electrode-TCNQ-aqueous (electrolyte) is complex, irrespective of whether the solid on the electrode surface is attached by direct adherence or formed by electrochemical deposition. In order to understand the origin of reaction pathways that accompany the TCNQ]0/− process, fast scan rate (0.1 V s−1) redox cycling and potential step experiments on TCNQ mechanically attached to a glassy carbon electrode placed in aqueous solution containing 0.1 M electrolyte (KCl, CsCl, or Et4NCl) have been monitored by the technique of in situ atomic force microscopy (AFM). The shapes of cycling voltammograms are consistent with the presence of a mixture of diffusion and surface processes in the initial cycles. AFM results show that, during the early stage of the redox cycling experiments, electrochemical reduction of TCNQ to sparingly soluble TCNQ is accompanied by a redistribution process. This rearrangement results in the transformation of arrays of almost amorphous solid to a lower energy microcrystalline state which has a more thin film-type appearance. When CsCl is the electrolyte, long needle-type crystals are detected by the AFM method after long periods of redox cycling. The identity of the cation in the supporting electrolyte and the solubility of the reduced salt formed by reduction of TCNQ affect the nature of the voltammetry observed during early stages of redox cycling. When the redistribution process is completed and the stable crystalline phase is formed, the voltammetry of the TCNQ]0/− couple is predominantly controlled by a nucleation-growth mechanism. Received: 8 March 1999 / Accepted: 12 April 1999
Keywords:7  7  8  8-Tetracyanoquinodimethane  Atomic force microscopy  Redistribution reaction  Redox cycling
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号