首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Statistical mechanics of bilayer membranes in troubled aqueous media
Authors:M Benhamou  K Elhasnaoui  H Kaidi  M Chahid
Institution:Laboratoire de Physique des Polymères et Phénomènes Critiques, Faculté des Sciences Ben M’sik, P.O. 7955, Casablanca, Morocco
Abstract:We consider a bilayer membrane surrounded by small impurities, assumed to be attractive or repulsive. The purpose is a quantitative study of the effects of these impurities on the statistical properties of the supported membrane. Using the replica trick combined with a variational method, we compute the membrane mean-roughness and the height correlation function for almost-flat membranes, as functions of the primitive elastic constants of the membrane and some parameter that is proportional to the volume fraction of impurities and their interaction strength. As results, the attractive impurities increase the shape fluctuations due to the membrane undulations, while repulsive ones suppress these fluctuations. Second, we compute the equilibrium diameter of (spherical) vesicles surrounded by small random particles starting from the curvature equation. Third, the study is extended to a lamellar phase composed of two parallel fluid membranes, which are separated by a finite distance. This lamellar phase undergoes an unbinding transition. We demonstrate that the attractive impurities increase the unbinding critical temperature, while repulsive ones decrease this temperature. Finally, we say that the presence of small impurities in an aqueous medium may be a mechanism to suppress or to produce an unbinding transition, even the temperature and polarizability of the aqueous medium are fixed, in lamellar phases formed by parallel lipid bilayers.
Keywords:Bilayer membranes  Vesicles  Impurities  Equilibrium  Statistical mechanics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号