Abstract: | As is known [1], two-dimensional waves develop in the boundary layer and then become three-dimensional waves with increase of the Reynolds number R. Since Squire [2] has shown that the linear growth of three-dimensional waves is more intense than that of the two-dimensional, it is natural that the behavior of three-dimensional waves in the boundary layer is explained by nonlinear intersection [3], However, Gaster [4] has noted that although disturbances which increase with time are usually considered, experimentally we observe disturbances which grow in space. (Squire's proof does not extend to this case.) It has been shown that the spatially growing disturbances cannot explain the occurrence of the three-dimensional waves (in the linear formulation).The author wishes to thank his scientific advisor G. I. Petrov and also A. A. Zaitsev for valuable discussions of the study. |