首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sensing the physicochemical nature of he and ne in micropores by adsorption measurements
Authors:Saig Avraham  Finkelstein Yacov  Danon Albert  Koresh Jacob E
Institution:Chemistry Division, Nuclear Research Center Negev, Beer-Sheva 84190, Israel.
Abstract:He and Ne in contact with molecular sieves in the form of crystalline A zeolites and amorphous carbon molecular sieves fibers (CMSF) were studied by adsorption measurements. Classification of the effective enclosure of zeolitic apertures and of graphitic constrictions, as determined by recent temperature-programmed desorption mass spectrometry (TPD-MS) studies of adsorption of He and Ne onto these materials, was utilized in making a prudent choice of samples and experimental conditions. In view of the former TPD information, the behaviors of adsorption and volumetric measurements reported herein are straightforwardly interpreted. The combined TPD, adsorption isotherms, and dead volume data deepen the understanding of the physicochemical nature of adsorbed gas, where gas adsorption in the vicinity of pore constrictions and/or apertures as well as on the inner surface areas of pores and/or cages could be resolved. Previous conclusions that the huge activation energies measured for Ne/CMSF at high temperatures are unlikely to characterize chemical desorption but reflect those required for overcoming the barrier of effectively constricted apertures were confirmed by the volumetric data presented here. At 77 K, considerable He adsorption was observed in the porous solids and found to be responsible for abnormal deduced values of dead volumes. The occurrence of significant adsorption of He onto A zeolites and CMSF at 77 K warrants the realization that in cases concerning porous materials, volumetrically deduced quantities should not be taken for granted, but should be carefully considered and uniquely interpreted in relation to the specific experimental conditions under which they are taken.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号