Monoxidised Sulfur and Selenium Derivatives of 1,8‐Bis(diphenylphosphino)naphthalene: Synthesis and Coordination Chemistry |
| |
Authors: | Atilla Karaç ar,Matthias Freytag,Holger Thö nnessen,Jan Omelanczuk,Peter G. Jones,Rainer Bartsch,Reinhard Schmutzler |
| |
Abstract: | Treatment of 1,8‐bis(diphenylphosphino)naphthalene (dppn, 1 ) with stoichiometric amounts of sulfur or selenium in toluene at 80 °C selectively afforded the diphosphine monochalcogenides 1‐Ph2P(C10H6)‐8‐P(:S)Ph2 (dppnS, 2 a ) and 1‐Ph2P(C10H6)‐8‐P(:Se)Ph2 (dppnSe, 2 b ). The 31P{1H} NMR spectrum of 2 b showed an unusually large 5J(P–Se) value, which indicates a significant through‐space coupling component. The monosulfide acted as a bidentate P,S‐ligand towards platinum(II) ( 3 a ), whereas the corresponding monoselenide complex ( 3 b ′) lost elemental selenium with formation of the previously reported complex [PtCl2(dppn)‐P,P′] ( 3 ). Treatment of dppnSe with [(nor)Mo(CO)4] (nor = norbornadiene) led to formation of [(dppnSe)Mo(CO)4‐P,Se] ( 3 b ). Solutions of the latter slowly deposited Se with formation of [(dppn)Mo(CO)4‐P,P′] ( 4 ) which was also obtained by independent synthesis from 1 and [(nor)Mo(CO)4]. All isolated new compounds were characterised by a combination of 31P, 1H, 13C and 77Se ( 2 b ) NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis. Single‐crystal X‐ray structure determinations were performed for dppnSe ( 2 b ), [PtCl2(dppnS)‐P,S] ( 3 a ), [(dppnSe)Mo(CO)4‐P,Se] ( 3 b ) and [(dppn)Mo(CO)4‐P,P′] ( 4 ). In 2 b steric effects cause the naphthalene ring to be distorted and force the phosphorus atoms by 65 and 59 pm to opposite sides of the best naphthalene plane. In the metal complexes 3 a , 3 b and 4 the phosphino‐phosphinochalcogenyl systems act as bidentate ligands through the P and the chalcogen atoms. The naphthalene systems are again distorted. The two independent molecules of 4 differ in their conformations. |
| |
Keywords: | Phosphorus ligands Chalcogens Carbonyl complexes Strained molecules Crystal structure |
|
|