首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis and polymerization of chiral methacrylates bearing a cholesteryl or menthyl group
Authors:Yong‐Kyung Lee  Kenjiro Onimura  Hiromori Tsutsumi  Tsutomu Oishi
Abstract:Chiral methacrylates, that is, cholesteryl (ChMOC) and l‐menthyl (MnMOC) N‐(2‐methacryloyloxyethyl)carbamates, were synthesized from 2‐methacryloyloxyethyl isocyanate and cholesterol and l‐menthol, respectively. Radical polymerizations of ChMOC and MnMOC gave number‐average molecular weights for poly(ChMOC) and poly(MnMOC) of up to 3.74 × 104 and 9.39 × 104, respectively, and the specific rotations (α]urn:x-wiley:0887624X:media:POLA180:tex2gif-stack-1) were ?43.1° to ?47.7° and ?87.6° to ?89.0°, respectively. Temperature dependence of the specific optical rotation was observed for poly(ChMOC) but not for poly(MnMOC). The hydrogen bonds based on urethane segments for poly(ChMOC) were stronger than those for poly(MnMOC) according to IR spectra. In addition, the chiroptical properties of poly(ChMOC) were slightly affected by temperature in the presence of trifluoroacetic acid acting as an inhibitor for the formation of hydrogen bonds. Therefore, poly(ChMOC) may have a regular conformation due to hydrogen bonds and interaction between cholesteryl groups. Radical copolymerizations of ChMOC with styrene, methyl methacrylate, N‐cyclohexylmaleimide, and N‐phenylmaleimide were performed with 2,2′‐azobisisobutyronitrile in tetrahydrofuran at 60 °C. Monomer reactivity ratios and Alfrey–Price Q–e were determined. Chiroptical properties of the copolymers were influenced by co‐units. Thermal and X‐ray diffraction analyses were performed for the homopolymers and copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4315–4325, 2000
Keywords:2‐methacryloyloxyethyl isocyanate  radical polymerization  hydrogen bond  chiral methacrylate  optically active polymer  monomer reactivity ratios
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号