Abstract: | Structures of Ionic Di(arenesulfonyl)amides. 2. Silver(I) Di(arenesulfonyl)amides and a Silver(I) (Arenesulfonyl)(alkanesulfonyl)amide: From Ribbons to Lamellar Layers Exhibiting Short C–H…Hal–C or C–Br…Br–C Interlayer Contacts Low‐temperature X‐ray crystal structures are reported for AgN(SO2C6H4‐4‐X)2 · H2O, where X is Cl ( 4 ) or Br ( 5 ), and for AgN(SO2Ph)(SO2Me) ( 6 ). Compounds 4 and 5 and the previously described F analogue ( 3 ) are isotypic, though not strictly isostructural (monoclinic, space group P21/c, Z = 4, but egregiously large discrepancies of x and z coordinates for corresponding atoms). Throughout this triad, glide‐plane related formula units are linked along the z axis to form infinite ribbons [(ArSO2)2N–Ag(μ‐H2O)]∞, in which Ag extends its coordination number to five by accepting one Ag–O bond from each of the (ArSO2)2N⊖ ligands in the adjacent units. By means of O–H…O(S) hydrogen bonds, the ribbons are associated into lamellar layers parallel to the xz plane. Owing to the folded conformation of the anions, the layers display an inner polar region of Ag atoms, H2O molecules and N(SO2)2 groups, outer apolar regions of stacked pairs of aryl rings, and interlayer regions hosting the halogen atoms. Inspection of the latter areas provides sound evidence that the distinct juxtapositions of adjacent layers arise from specific interlamellar attractions and repulsions ( 3 : two C–H…F, all F…F beyond the van der Waals limit dW; 4 : one C–H…Cl, close packing of Cl atoms at Cl…Cl ≈ dW; 5 : one C–H…Br, one short Br…Br contact < dW, all other Br…Br > dW). Structure 6 (monoclinic, P21/n, Z = 4) consists of a lamellar coordination polymer, in which the cation accepts one Ag–N and three Ag–O bonds drawn from four different anions. On account of crystal symmetry, the extended ligand has its Ph and Me groups distributed on both sides of the sheet, the phenyl rings forming the apolar regions of the lamella, whereas the smaller methyl groups are integrated into the corrugated inorganic region by means of weak C–H…O hydrogen bonds. |