首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermodynamic perturbation theory of simple liquids. A hierarchy of equations for expansion coefficients
Authors:Yu T Pavlyukhin
Institution:1.Institute of Solid State Chemistry and Mechanochemistry, Siberian Division,Russian Academy of Sciences,Novosibirsk,Russia
Abstract:The properties of an expansion of the statistical sum of a simple liquid with respect to the potential in thermodynamic perturbation theory are analyzed. The coefficients of this expansion are determined by the unperturbed potential, depend on temperature and density, and can be calculated by means of mathematical modeling. It is shown here that the derivatives of these coefficients with respect to temperature and density are expressed through the higher expansion coefficient (these relations are usually called a hierarchy of equations). These coefficients determine the expansion of the Helmholtz free energy and RDF with respect to the perturbation potential. The thermodynamic characteristics of the system (entropy, internal energy, pressure) are expressed through both the differential relations for the Helmholtz free energy and the integral expressions containing RDF. It is found that the hierarchy of equations obtained in this work makes these different methods equivalent. This is important for the application of thermodynamic perturbation theory because it becomes unnecessary to model any other equilibrium properties of the system apart from the expansion coefficients.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号