首页 | 本学科首页   官方微博 | 高级检索  
     


Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem
Authors:Alain Billionnet  Sourour Elloumi
Affiliation:(1) Laboratoire CEDRIC, Institut d'Informatique d'Entreprise, 18 allée Jean Rostand, 91025 Evry, France;(2) Laboratoire CEDRIC, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75141 Paris, France
Abstract:In this paper, we consider problem (P) of minimizing a quadratic function q(x)=x t Qx+c t x of binary variables. Our main idea is to use the recent Mixed Integer Quadratic Programming (MIQP) solvers. But, for this, we have to first convexify the objective function q(x). A classical trick is to raise up the diagonal entries of Q by a vector u until (Q+diag(u)) is positive semidefinite. Then, using the fact that x i 2=x i, we can obtain an equivalent convex objective function, which can then be handled by an MIQP solver. Hence, computing a suitable vector u constitutes a preprocessing phase in this exact solution method. We devise two different preprocessing methods. The first one is straightforward and consists in computing the smallest eigenvalue of Q. In the second method, vector u is obtained once a classical SDP relaxation of (P) is solved. We carry out computational tests using the generator of (Pardalos and Rodgers, 1990) and we compare our two solution methods to several other exact solution methods. Furthermore, we report computational results for the max-cut problem.
Keywords:Integer programming  Quadratic 0-1 optimization  Convex quadratic relaxation  Semidefinite positive relaxation  Experiments  Max-cut
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号