首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bifunctional charge transfer operated fluorescent probes with acceptor and donor receptors. 2. Bifunctional cation coordination behavior of biphenyl-type sensor molecules incorporating 2,2':6',2' '-terpyridine acceptors
Authors:Li Y Q  Bricks J L  Resch-Genger U  Spieles M  Rettig W
Institution:Working Group Optical Spectroscopy, Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Germany.
Abstract:Based on donor (D)-acceptor (A) biphenyl (b) type molecules, a family of fluorescent reporters with integrated acceptor receptors and noncoordinating and coordinating donor substituents of varying strength has been designed for ratiometric emission sensing and multimodal signaling of metal ions and protons. In part 2 of this series on such charge transfer (CT) operated mono- and bifunctional fluorescent devices, the cation coordination behavior of the sensor molecules bpb-R equipped with a proton- and cation-responsive 2,2':6',2' '-terpyridine (bp) acceptor and either amino-type donor receptors (R = DMA, A15C5 = monoaza-15-crown-5) or nonbinding substituents (R = CF(3), H, OMe) is investigated employing the representative metal ions Na(I), Ca(II), Zn(II), Hg(II), and Cu(II) and steady-state and time-resolved fluorometry. The bpb-R molecules, the spectroscopic behavior and protonation behavior of which have been detailed in part 1 of this series, present rare examples for CT-operated bifunctional fluorescent probes that can undergo consecutive and/or simultaneous analyte recognition. The analyte-mediated change of the probes' intramolecular CT processes yields complexation site- and analyte-specific outputs, i.e., absorption and fluorescence modulations in energy, intensity, and lifetime. As revealed by the photophysical studies of the cation complexes of these fluoroionophores and the comparison to other neutral and charged D-A biphenyls, the spectroscopic properties of the acceptor chelates of bpb-R and A- and D-coordinated bpb-R are governed by CT control of an excited-state barrier toward formation of a forbidden charge transfer state, by the switching between analytically favorable anti-energy and common energy gap law type behavior, and by the electronic nature of the ligated metal ion. This accounts for the astonishingly high fluorescence quantum yields of the acceptor chelates of bpb-R equipped with weak or medium-sized donors and the red emission of D- and A-coordinated bpb-R observed for nonquenching metal ions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号