首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Three-dimensional CFD modeling of transport phenomena in anode-supported planar SOFCs
Authors:Zhonggang Zhang  Danting Yue  Changrong He  Shuang Ye  Weiguo Wang  Jinliang Yuan
Institution:1. Marine Engineering College, Dalian Maritime University, 116026, Dalian, China
2. Marine Engineering College, Jimei University, 361021, Xiamen, China
3. Ningbo Institute of Material Technology and Engineering (NIMTE), Chinese Academy of Science, 315201, Ningbo, China
4. Department of Energy Sciences, Lund University, Box 118, 22100, Lund, Sweden
Abstract:In this study, a three-dimensional computational fluid dynamics model has been developed for an anode-supported planar SOFC. The conservation equations of mass, momentum, species/charges and thermal energy are solved by finite volume method for a complete unit cell consisting of 13 parallel channels in both anode and cathode. The simulation results of the developed model are well in agreement with the experimental data obtained at same conditions. In this study, the co-flow arrangement with hydrogen utilization of 60 % and operating voltage of 0.7 V is used as the base case, and compared with the counter-flow arrangement. The predicted results reveals that the maximum temperature obtained in the counter-flow arrangement is about 10 °C lower than that of co-flow, but the counter-flow arrangement has a higher temperature gradient between the respective anodes and cathodes in a cross-section normal to the main flow direction, especially in the air inlet region of the cell (x = 0.04 m),which is very harmful to the lifetime of materials. The current density is very unevenly distributed along and normal to the flow direction for both the co- and counter-flow arrangements, and the maximum values occur at junctions of the electrodes, channels and ribs, which causes higher over-potentials and ohmic heating.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号