首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tumor vascular area correlates with photosensitizer uptake: analysis of verteporfin microvascular delivery in the Dunning rat prostate tumor
Authors:Zhou Xiaodong  Chen Bin  Hoopes P Jack  Hasan Tayyaba  Pogue Brian W
Institution:Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
Abstract:The parameters that limit supply of photosensitizer to the cancer cells in a solid tumor were systematically analyzed with the use of microvascular transport modeling and histology data from frozen sections. In particular, the vascular permeability transport coefficient and the effective interstitial diffusion coefficient were quantified for Verteporfin-for-Injection delivery of benzoporphyrin derivative (BPD). Orthotopic tumors had higher permeability and diffusion coefficients (Pd = 0.036 microm/s and D = 1.6 microm(2)/s, respectively) as compared to subcutaneously grown tumors (Pd = 0.025 microm/s and D = 0.9 microm2/s, respectively), likely due to the fact that the vessel patterns are more homogeneous orthotopically. In general, large intersubject and intratumor variability exist in the verteporfin concentration, in the range of 25% in plasma concentration and in the range of 20% for tissue concentrations, predominantly due to these microregional variations in transport. However, the average individual uptake of photosensitizer in tumor tissue was only correlated to the total vascular area within the tumor (R2 = 64.1%, P < 0.001). The data are consistent with a view that microregional variation in the vascular permeability and interstitial diffusion rate contribute the spatial heterogeneity observed in verteporfin uptake, but that average supply to the tissue is limited by the total area of perfused blood vessels. This study presents a method to systematically analyze micro-heterogeneity as well as possible methods to increase delivery and homogeneity of photosensitizer within tumor tissue.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号