首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis and characterization of thermosensitive interpenetrating polymer networks based on N-isopropylacrylamide/N-acryloxysuccinimide, crosslinked with polylysine, grafted onto polypropylene
Authors:Lorena García-UriosteguiGuillermina Burillo  Emilio Bucio
Institution:Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México DF 04510, Mexico
Abstract:Interpenetrating polymer networks (IPNs) based on poly (N-isopropylacrylamide), (PNIPAAm) and poly (N-acryloxysuccinimide) (PNAS), grafted onto polypropylene (PP), were synthesized in three consecutive steps using ionizing radiation in the first and second steps and chemical reaction in third one. In the first step a thermosensitive graft copolymer of NIPAAm onto PP film was obtained by gamma radiation with a 60Co source. The grafted side chains of PNIPAAm were then crosslinked with gamma radiation to give net-PP-g-NIPAAm]. The secondary network was obtained in situ by chemical crosslinking between PNAS and polylysine (pLys). The PP-g-IPNs exhibited the lower critical solution temperature (LCST) at around 32 °C. Based on its thermoreversible behavior, this system could be used for immobilization of biomolecules. The phase transition temperature (LCST) and network properties of the IPNs were measured by swelling behavior. Additional characterization by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and infrared (FTIR-ATR) determinations are reported.
Keywords:IPNs  Radiation grafting  NIPAAm  NAS  Grafted IPNs
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号