首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrokinetic supercharging preconcentration prior to CGE analysis of DNA: Sensitivity depends on buffer viscosity and electrode configuration
Authors:Xiaoxue Ye  Satomi Mori  Mihoro Yamada  Junji Inoue  Zhongqi Xu  Takeshi Hirokawa
Institution:1. Applied Chemistry,, Department of Chemistry and Chemical Engineering, Graduate School of Engineering, Hiroshima University, , Hiroshima, Japan;2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, , Shanghai, P. R. China;3. Key Laboratory of Science & Technology of Eco‐Textile, Ministry of Education, Donghua University, , Shanghai, P. R. China
Abstract:Aiming to high sensitivity DNA analysis by CGE, electrokinetic supercharging (EKS) approach was adopted in this article. EKS is known as an online preconcentration technique that combines electrokinetic sample injection (EKI) with transient ITP (tITP). Herein, two factors of buffer viscosity and electrode configuration were studied to further improve EKS performance. An ultralow‐viscosity Tris‐Boric acid‐EDTA (TBE) buffer solution, consisted of 2% low‐molecular‐weight hydroxypropyl methyl cellulose (HPMC) and 6% mannitol and with pH 8.0 adjusted by boric acid, was applied. The boric acid would make a complex with mannitol and generates borate polyanion, which acts as the leading ion for tITP process. The new electrode configuration, a Pt ring around capillary, was modified on Agilent CE system to lead large amount sample introduction during EKS. The standard DNA sample of φX174/HaeIII digest was used to evaluate the qualitative and quantitative abilities of the proposed strategy. The 170 000‐fold highly diluted sample at concentration of 3.0 ng/mL was enriched by EKS and detected by normal UV detection method. The obtained LOD of the weakest peak of 72 bp fragment was around 7.7 pg/mL, apparently improved more than 10 000‐fold in comparison with conventional CGE with UV detection.
Keywords:DNA analysis  Electrode configuration  Electrokinetic supercharging  TBE buffer  Ultralow viscosity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号