首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biodegradable systems: Thermodynamics, rheological properties, and biocorrosion
Authors:A I Suvorova  I S Tyukova
Institution:(1) Ural State University, pr. Lenina 51, Yekaterinburg, 620083, Russia
Abstract:Systems based on starch and chitosan blends with synthetic polymers and cellulose derivatives (poly(ethylene oxide) and methyl cellulose of various molecular masses, PA, and ethylene-vinyl acetate copolymers containing different amounts of vinyl acetate groups) have been studied. The thermodynamic characteristics of the formation of blends have been determined. The rheological properties characterizing formation of blends from melts have been investigated. The biocorrosion ability of the blends after their use has been estimated by various methods. The concentration dependences of the thermodynamic functions of mixing of components (change in the Gibbs energy, enthalpy, and entropy) change sign in a wide composition range, indicating the complexity of mixing of rigid-chain natural polysaccharides with synthetic polymers. The rheological study of blends in which starch or chitosan plays the role of a biodegradation modifier shows that they are non-Newtonian fluids. The absolute values of viscosity and the activation parameters of melts increase with the content of polysaccharide in the system. The values of viscosity correspond to those typical for commercially processable polymers. The blends under study are biodegradable in a wet and water-soil medium with the content of the natural component being in the range 15–30 wt %.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号