首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetics of cooperative protein folding involving two separate conformational families
Institution:1. Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA;2. Cornell Theory Center, Cornell University, Ithaca, NY 14853-3801, USA
Abstract:The master equation that describes the kinetics of protein folding is solved numerically for a portion of Staphylococcal Protein A by a Laplace transformation. The calculations are carried out with 50 local-minimum conformations belonging to two conformational families. The master equation allows for transitions among all the 50 conformations in the evolution toward the final folded equilibrium distribution of conformations. It is concluded that the native protein folds in a fast cooperative process. The global energy minimum of a native protein can be reached after a sufficiently long folding time regardless of the initial state and the existence of a large number of local energy minima. Conformations representing non-native states of the protein can transform to the native state even if they do not belong to the native conformational family. Given a starting conformation, the protein molecule can fold to its final conformation through different paths. Finally, when the folding reaches the equilibrium distribution, the protein molecule adopts a set of conformations in which the global minimum has the largest average probability.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号