Identification and quantification of the antimicrobial components of a citrus essential oil vapor |
| |
Authors: | Phillips Carol A Gkatzionis Konstantinos Laird Katie Score Jodie Kant Avinash Fielder Mark D |
| |
Affiliation: | School of Health, University of Northampton, Boughton Green Road, Northampton, NN2 7AL, UK. Carol.phillips@northampton.ac.uk |
| |
Abstract: | The anti-bacterial components of a citrus essential oil vapor were identified as linalool, citral and beta-pinene using a bioautography method and quantified by GC-MS. Essential oil vapor release, monitored in real-time with Atmospheric Pressure Chemical Ionization - MS (APCI-MS), showed differences in the vapor release profile oflimonene, beta-pinene and linalool over 24 hours, while Solid Phase Micro-extraction (SPME) GC-MS demonstrated changes in composition of the vapor at 35 degrees C. Fourteen isolates were tested in vitro for their susceptibility to the EO vapor and to linalool, citral and beta-pinene vapors, both separately and in a mixture containing the three components in the amounts at which they occur in the EO vapor. All eleven Gram-positive strains tested were susceptible to the EO vapor, linalool, citral and beta-pinene vapors separately and the mixture with zones of inhibition of 4.34 cm, 5.32 cm, 5.58 cm, 4.86 cm and 4.68 cm, respectively. Of the three Gram-negative strains tested, Pseudomonas aeruginosa 10145 was resistant to all the vapors. When bacteria inoculated onto stainless steel surfaces were exposed to either the EO vapor or a linalool/citral/beta-pinene vapor mixture there was no significant difference in reduction for the Gram-positive isolates, while the Gram-negative isolates were resistant to both EO vapor and the linalool/citral/beta-pinene mixture. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|