首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Potassium adsorption on graphite(0001)
Authors:L sterlund  D V Chakarov  B Kasemo
Institution:

Department of Applied Physics, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg, Sweden

Abstract:Potassium adsorption on graphite has been studied with emphasis on the two-dimensional K adlayer below one monolayer. Data are presented for the work function versus coverage, high-resolution electron energy loss spectroscopy (HREELS) vibrational spectra of K-adlayers, low energy electron diffraction and ultraviolet photoemission spectroscopy (UPS) spectra at different coverages. The data provide information regarding the vibrational properties of the K-adlayer, the metallization of the adlayer at submonolayer coverages, and the charge transfer from the K adatoms to the graphite substrate. Analysis of the work function, HREELS, and UPS data provides a qualitatively consistent picture of the charge state of the K adatoms, where at low coverages, below a critical coverage θc (θc=0.2–0.3), the K adatoms are dispersed and (partially) ionized, whereas at θ>θc islands of a metallic 2×2 K phase develops that coexist with the dispersed a K adatoms up to θ=1. We show that it is possible to understand the variation of the work function data based on a two-phase model without invoking a depolarization mechanism of adjacent dipoles, as is normally done for alkali-metal adsorption on metal surfaces. Similarly, the intensity variation as a function of coverage of the energy loss peak at 17 meV observed in HREELS, and the photoemission peak at Eb=0.5 eV seen in UPS can be understood from a two-phase model. A tentative explanation is presented that connects apparent discrepancies in the literature concerning the electronic structure of the K adlayer. In particular, a new assignment of the K-induced states near the Fermi level is proposed.
Keywords:Alkali metals  Chemisorption  Graphite  Surface electronic phenomena
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号