首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Design and synthesis of sulfur based inhibitors of matrix metalloproteinase-1
Authors:Fujisawa Tetsunori  Odake Shinjiro  Ogawa Yuji  Yasuda Junko  Morita Yasuo  Morikawa Tadanori
Institution:Research Institute, Fuji Chemical Industries, Ltd, Takaoka, Toyama, Japan.
Abstract:Fibroblast collagenase (MMP-1), a member of the matrix metalloproteinases family, is believed to be a pathogenesis of arthritis, by cleaving triple-helical type II collagen in cartilage. From the similarity of the active site zinc binding mode with hydroxamate, we designed and synthesized alpha-mercaptocarbonyl possessing compounds (3-5), which incorporated various peptide sequences as enzyme recognition sites. The P4-P1 peptide incorporating compound (3) exhibited as potent inhibition as the hydroxamate (1) and the carboxylate (2) type inhibitors, with an IC50 of 10(-6) M order against MMP-1. But the inhibitor (3) related compounds (6-8) displayed decreased or no inhibitory potencies. These results suggest that the existence of both the carbonyl and thiol groups might be critical for the inhibition, and the distance between the two functional groups is important for inhibitory potency. For Pn' peptide incorporating compounds (4a-k), except for 4h and 4k, all compounds showed IC50 values under sub-nanomolar. Among them, for potent inhibition, Leu was better than Phe and Val as the P1' amino acid, and the P2' position amino acid was necessary, and preferentially Phe. Insertion of the Pn peptide into 4d or 4k, giving compounds 5a-c, did not increase the activities of 4d and 4k. Substitution of the mercapto group with other functional groups lost the activity of compound 4a. The stereochemical preference at the thiol-attached position was also determined by preparation of both isomers of 4a. It was found that the S configuration compound (36b) is approximately 100 times more potent than the corresponding R-isomer (36a).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号