首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhancing stability of poly(1,3-cyclohexadiene)-based materials by bromination and dehydrobromination
Authors:Tianzi Huang  Xiaojun Wang  Thomas Malmgren  Jimmy W Mays
Institution:1. Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States;2. Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
Abstract:In order to improve their thermal stability, poly(1,3-cyclohexadiene) (PCHD) homopolymer, diblock copolymer of PCHD with styrene (PCHD-b-PS), and crosslinked PCHD membranes were dehydrogenated by addition of bromine to the polymer in solution, followed by dehydrobromination using an isothermal treatment at elevated temperature. The brominated PCHD materials thus obtained were characterized via FT-IR and thermogravimetric analysis (TGA) before and after dehydrobromination. Dehydrobromination was performed inside a TGA instrument, allowing insight into thermal stability of the analytes to be obtained. The dehydrobrominated PCHD samples were characterized using elemental analysis, and it was found the dehydrogenation of PCHD to polyphenylene was not complete. Nevertheless, some aromatization did occur, and the thermal stability of the treated polymer was greatly enhanced as compared to its PCHD precursor. Such materials may thus be of interest as high carbon content, graphene-like films. Crosslinked PCHD membranes and PCHD-b-PS diblock copolymers were treated via the same bromination/pyrolysis process, which resulted in markedly improved thermal stabilities for these materials as well.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号