首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimization of Nanofluidic Devices for Geometry-Induced Electrostatic Trapping
Authors:Deepika Sharma  Roderick Y H Lim  Thomas Pfohl  Yasin Ekinci
Institution:1. Swiss Nanoscience Institute, Basel, 4056 Switzerland;2. Swiss Nanoscience Institute, Basel, 4056 Switzerland

Biozentrum, University of Basel, Basel, 4056 Switzerland;3. Swiss Nanoscience Institute, Basel, 4056 Switzerland

Institute of Physics, University of Freiburg, Freiburg, D-79104 Germany

Abstract:Nanoparticle trapping in a nanofluidic device utilizing geometry-induced electrostatic (GIE) potential trap is an efficient and robust way to perform nano?object confinement and single particle studies. The GIE?trapping is a passive method that solely depends on the device geometry and device-particle surface interaction. Therefore, optimization of a nanofluidic device based on experimental requirements, helps to achieve stiffer single-particle trapping. The efficiency of a GIE?trapping device is defined in terms of residence time and trapping stiffness of the nanoparticle inside a potential trap. The present study reveals all crucial parameters that affect the device efficiency, particle trapping stiffness, and particle residence time. Furthermore, the trends of particle trapping stiffness are presented as a function of crucial parameters and demonstrate two variants of simulations to estimate the particle trapping efficiency: (a) using charged particle, and (b) using point charge approximation. Simulations with charged particle give more realistic values related to particle trapping whereas simulations with point charge approximation is a faster approach which gives approximate values and a guideline for more rigorous simulations. The results demonstrate a good agreement with experimental observations and hold the key for future developments in this field, wherein a device geometry can be very precisely optimized.
Keywords:electrostatic trapping  finite element analysis  nanofluidics  simulations  thermodynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号