首页 | 本学科首页   官方微博 | 高级检索  
     

基于Stiefel流形的粒子滤波器研究
引用本文:朱志宇,杨官校. 基于Stiefel流形的粒子滤波器研究[J]. 物理学报, 2010, 59(12): 8316-8321
作者姓名:朱志宇  杨官校
作者单位:江苏科技大学电子信息学院,镇江 212003
基金项目:江苏省高等学校自然科学基金(批准号: 06KJB510030)和国家自然科学基金(批准号:61075028)资助的课题.
摘    要:为了解决粒子滤波的粒子退化和粒子多样性丧失问题,提出了一种基于Stiefel流形的粒子滤波算法.该算法将系统模型置于Stiefel流形上,用朗之万分布描述过程转移概率分布,用矩阵正态分布表示似然函数分布,在流形分布上进行粒子采样.在计算加权粒子的均值时,将流形嵌入到欧氏空间中,先计算欧氏空间中的粒子均值,再将计算结果投影到嵌套流形上,这就排除了噪声统计特性对粒子权重方差的影响,得到了一种受系统状态模型限制较少的重要性概率密度函数通用选择方案.仿真时选取单变量非静态增长模型,仿真结果验证了该算法的实时性、鲁棒性,滤波精度和滤波效率均比无味粒子滤波算法更好.

关 键 词:粒子滤波  Stiefel流形  单变量非静态增长模型
收稿时间:2009-08-16
修稿时间:2010-07-05

Stiefel manifold particle filtering
Zhu Zhi-Yu,Yang Guan-Xiao. Stiefel manifold particle filtering[J]. Acta Physica Sinica, 2010, 59(12): 8316-8321
Authors:Zhu Zhi-Yu  Yang Guan-Xiao
Affiliation:School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China;School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract:In order to solve the problems of particle degeneration and lackness of diversity of particle filter, a new particle filter based on Stiefel manifold (SMPF) is proposed in this paper. In the SMPF the system model is based on Stiefel manifold, Langevin distribution is used as a prior density, the matrix normal distribution serves a as likelihood function, and particle is sampled on the manifold distribution. First, manifold is embedded in Euclidean space, then the mean of particles is calculated in Euclidean space and its result is projected back to embedded manifold. So the influence on variance of particle weight caused by statistic characteristics of noise is removed, and a kind of universal selecting scheme of important probability density function is acquired which is hardly restrained to system state model. The simulation results based on univariate nonstationary growth model nonlinear system indicate that the SMPF works much better than scentless particle filter in real-time performance, robustness, filtering precision and filtering efficiency.
Keywords:particle filters  Stiefel manifold  univariate nonstationary growth model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号