首页 | 本学科首页   官方微博 | 高级检索  
     


Poly(Aryl ethers) by nucleophilic aromatic substitution. II. Thermal stability
Authors:W. F. Hale  A. G. Farnham  R. N. Johnson  R. A. Clendinning
Abstract:The thermal stability and degradation process for a specific poly(aryl ether) system have been studied. In particular, the polymer which is available from Union Carbide Corporation as Bakelite polysulfone has been examined in detail. Polysulfone can be prepared from 2,2-bis(4-hydroxyphenyl)propane and 4,4′-dichlorodiphenyl sulfone by nucleophilic aromatic substitution. Because of a low-temperature transition at ? 100°C. and a glass transition at 195°C., polysulfone retains useful mechanical properties from ?100°C. to 175°C. A number of experimental methods were utilized to study the thermal decomposition process for this polymer system. Polysulfone gradually degraded in vacuum above 400°C. as demonstrated by mass spectrometry. Thermogravimetric analysis in argon, air, or high vacuum indicated that rapid decomposition began above 460°C. From gas chromatography, mass spectrometry and repeated laboratory pyrolyses, a number of products from polymer decompositions were identified. The most important degradation process in vacuum or inert atmosphere was loss of sulfur dioxide. Several model compounds representative of portions of poly(aryl ether) molecules were synthesized and the relative thermal stabilities determined. Possible mechanisms for pure thermal decomposition of polysulfone were derived from the product analyses, model studies, and consideration of bond dissociation energies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号