首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrochemical kinetics of nanostructure LiFePO4/graphitic carbon electrodes
Institution:1. Department of Applied Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan;2. Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan;3. Division of Art and Innovative Technologies, K & W Inc., 1-3-16-901 Higashi, Kunitachi, Tokyo 186-0002, Japan;4. Université Paul Sabatier Toulouse III, Institut Carnot CIRIMAT, UMR 5085, 118 route de Narbonne, F-31602 Toulouse Cedex 9, France;5. Réseau sur le Stockage Electrochimique de l''Energie (RS2E), FR CNRS 3459, France;6. Advanced Capacitor Research Center, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan;1. Department of Applied Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan;2. Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan;3. CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 118 route de Narbonne, 31062 Toulouse cedex 9, France;4. Réseau sur le Stockage Electrochimique de l''Energie, RS2E FR CNRS 3459, France;5. Advanced Capacitor Research Center, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
Abstract:Lithium cation insertion/deinsertion reaction kinetics in a LiFePO4 (LFP)/graphitic carbon composite material were electrochemically studied with a cavity microelectrode (CME). The LFP/graphitic carbon composite has a core LFP (crystalline/amorphous)/graphitic carbon shell structure. In the crystalline and amorphous LFP phase, different reaction mechanisms were observed and characterized. While the reaction mechanism in the crystalline LFP phase is controlled by Li+ diffusion, the amorphous LFP phase shows a fast, surface-controlled, pseudocapacitive charge-storage mechanism. This pseudocapacitive behavior is extrinsic in origin since it comes from the presence of Fe3 + defects in the structure. These features explain the ultrafast performance of the material which offers interesting opportunities as a positive electrode for assembling high power and high energy hybrid supercapacitors.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号