首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rheology of immiscible blends with particle-induced drop clusters
Authors:Prachi Thareja  Sachin Velankar
Institution:(1) Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
Abstract:We consider the effects of 2.7-μm-diameter hydrophobic silica particles added to droplet–matrix blends of polyethylene oxide (PEO) and polyisobutylene (PIB). The particles adsorb on the surface of the PEO drops but protrude considerably into the PIB phase. Hence, it is possible for a single particle to adsorb onto two PEO drops simultaneously. Such particles are called “bridging” particles, and they the glue drops into noncoalescing clusters. Flow visualization studies show that shearing the sample promotes bridging-induced clustering of drops and that the structure of the clusters depends on the shear rate. Rheologically, the most significant consequence of bridging-induced drop clustering appears to be a plateau in G′ at low frequencies characteristic of gel-like behavior. The gel-like behavior develops fully after shearing the sample, and the kinetics of gel formation are faster with increasing shear stress or increasing drop volume fraction. The gel-like behavior suggests that the bridging-induced drop clusters form a weak network. Apart from particle bridging, optical microscopy also reveals that particles can organize into a hexagonal lattice on the drops’ surfaces, a phenomenon that has only been noted in aqueous systems previously. Finally, rheology and flow visualization both suggest that particles promote coalescence of drops. This is surprising in light of much past research that shows that particles that are preferentially wetted by the continuous phase generally hinder coalescence in droplet–matrix systems.
Keywords:Polymer blend  Particle  Bridging  Pickering emulsion  Interfacial tension
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号