首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Klein tunneling in graphene: optics with massless electrons
Authors:P E Allain and J N Fuchs
Institution:(1) Department of Physics, College of Sciences, Shanghai University, Shanghai, 200444, China
Abstract:This article provides a pedagogical review on Klein tunneling in graphene, i.e. the peculiar tunneling properties of two-dimensional massless Dirac electrons. We consider two simple situations in detail: a massless Dirac electron incident either on a potential step or on a potential barrier and use elementary quantum wave mechanics to obtain the transmission probability. We emphasize the connection to related phenomena in optics, such as the Snell-Descartes law of refraction, total internal reflection, Fabry-Pérot resonances, negative refraction index materials (the so called meta-materials), etc. We also stress that Klein tunneling is not a genuine quantum tunneling effect as it does not necessarily involve passing through a classically forbidden region via evanescent waves. A crucial role in Klein tunneling is played by the conservation of (sublattice) pseudo-spin, which is discussed in detail. A major consequence is the absence of backscattering at normal incidence, of which we give a new shorten proof. The current experimental status is also thoroughly reviewed. The Appendix contains the discussion of a one-dimensional toy model that clearly illustrates the difference in Klein tunneling between mono- and bi-layer graphene.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号