首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of fan spray atomizers through numerical simulation
Authors:Mireia Altimira  Alejandro Rivas  Gorka S. Larraona  Raul Anton  Juan Carlos Ramos
Affiliation:Thermal and Fluids Engineering Division, Mechanical Engineering Department, Tecnun (University of Navarra), Manuel de Lardizábal 13, 20018 San Sebastián, Spain
Abstract:The present paper focuses on the mathematical modeling of industrial fan spray atomizers. The two-phase flow taking place inside the nozzle’s tip and the exterior region near the outlet of three different industrial nozzle designs has been modeled and simulated. As a result, valuable information has been obtained regarding the influence of the inner geometry on the flow and also the formation and development of the liquid sheet. Characteristic magnitudes such as the discharge coefficient and the liquid sheet thickness factor have been obtained and validated through experimental measurements. The accumulation of liquid at the border of fan-shaped liquid sheets, also known as rim, has been studied in the analyzed designs, revealing the presence of a tangential velocity component in the liquid sheet and a relationship between the incoming flow rate of the rim and the angle of the liquid sheet. The dependence of the results on turbulence modeling has also been analyzed, drawing interesting conclusions regarding their influence on the liquid sheet mean flow characteristics and on the surrounding gas. Thus, the mathematical model developed has been proved to be a useful tool for nozzle manufacturers; it provides the most important characteristic parameters of the liquid sheet formed given certain nozzle geometry and, additionally, those data necessary to carry out studies of instability, breakup and atomization of the liquid sheet.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号