首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal analysis as a quality tool for assessing the influence of thermo-mechanical degradation on recycled poly(ethylene terephthalate)
Authors:JD Badía  Francisco Vilaplana  Sigbritt Karlsson  A Ribes-Greus
Institution:1. Instituto de Tecnología de Materiales (ITM), Escuela Técnica Superior de Ingeniería del Diseño, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain;2. School of Chemical Science and Engineering, Fibre and Polymer Technology, KTH - Royal Institute of Technology, Teknikringen 56-58, SE-10044 Stockholm, Sweden
Abstract:Mechanical recycling of poly(ethylene terephthalate) (PET) was simulated by multiple processing to assess the effects of thermo-mechanical degradation, and characterized using rheological and thermal analysis techniques. Thermo-mechanical degradation under repeated extrusion induces chain scission reactions in PET, which result in a dramatic loss in the deformation capabilities and an increase in the fluidity of the polymer under reprocessing, reducing its recycling possibilities after four extrusion cycles. Multiple reprocessing severely affects the storage modulus and the microstructure of recycled PET, both in the amorphous and crystalline regions. Multimodal melting behavior is observed for reprocessed PET, indicating heterogeneous and segregated crystalline regions. A deconvolution procedure has been applied to individually characterize each crystalline population in terms of lamellar thickness distribution and partial crystallinity. Thermal analysis techniques such as differential scanning calorimetry (DSC) and dynamic-mechanical analysis (DMA) have proved to be suitable techniques for the quality assessment of recycled PET, giving unequivocal information about its degree of degradation compared to the common technological measurements of melt-mass flow rate (MFR) or oxidative stability (TOx).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号