首页 | 本学科首页   官方微博 | 高级检索  
     


Spin-state splittings, highest-occupied-molecular-orbital and lowest-unoccupied-molecular-orbital energies, and chemical hardness
Authors:Johnson Erin R  Yang Weitao  Davidson Ernest R
Affiliation:School of Natural Sciences, University of California, Merced, Merced, California 95343, USA.
Abstract:It is known that the exact density functional must give ground-state energies that are piecewise linear as a function of electron number. In this work we prove that this is also true for the lowest-energy excited states of different spin or spatial symmetry. This has three important consequences for chemical applications: the ground state of a molecule must correspond to the state with the maximum highest-occupied-molecular-orbital energy, minimum lowest-unoccupied-molecular-orbital energy, and maximum chemical hardness. The beryllium, carbon, and vanadium atoms, as well as the CH(2) and C(3)H(3) molecules are considered as illustrative examples. Our result also directly and rigorously connects the ionization potential and electron affinity to the stability of spin states.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号