首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical approaches to estimating homolytic bond dissociation energies of organocopper and organosilver compounds
Authors:Nicole J Rijs  Nigel J Brookes  Richard A J O'Hair  Brian F Yates
Institution:School of Chemistry, ?Bio21 Institute of Molecular Science and Biotechnology, and §ARC Centre of Excellence in Free Radical Chemistry and Biotechnology, The University of Melbourne , Victoria 3010, Australia.
Abstract:Although organocopper and organosilver compounds are known to decompose by homolytic pathways among others, surprisingly little is known about their bond dissociation energies (BDEs). In order to address this deficiency, the performance of the DFT functionals BLYP, B3LYP, BP86, TPSSTPSS, BHandHLYP, M06L, M06, M06-2X, B97D, and PBEPBE, along with the double hybrids, mPW2-PLYP, B2-PLYP, and the ab initio methods, MP2 and CCSD(T), have been benchmarked against the thermochemistry for the M-C homolytic BDEs (D(0)) of Cu-CH(3) and Ag-CH(3), derived from guided ion beam experiments and CBS limit calculations (D(0)(Cu-CH(3)) = 223 kJ·mol(-1); D(0)(Ag-CH(3)) = 169 kJ·mol(-1)). Of the tested methods, in terms of chemical accuracy, error margin, and computational expense, M06 and BLYP were found to perform best for homolytic dissociation of methylcopper and methylsilver, compared with the CBS limit gold standard. Thus the M06 functional was used to evaluate the M-C homolytic bond dissociation energies of Cu-R and Ag-R, R = Et, Pr, iPr, tBu, allyl, CH(2)Ph, and Ph. It was found that D(0)(Ag-R) was always lower (~50 kJ·mol(-1)) than that of D(0)(Cu-R). The trends in BDE when changing the R ligand reflected the H-R bond energy trends for the alkyl ligands, while for R = allyl, CH(2)Ph, and Ph, some differences in bond energy trends arose. These trends in homolytic bond dissociation energy help rationalize the previously reported (Rijs, N. J.; O'Hair, R. A. J. Organometallics2010, 29, 2282-2291) fragmentation pathways of the organometallate anions, CH(3)MR](-).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号