首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of tethering alkyl chains for amphiphilic ruthenium complex dyes on their adsorption to titanium oxide and photovoltaic properties
Authors:Jen-Shyang Ni  Chun-Yi Hung  Ken-Yen Liu  Yu-Hsun Chang  Kuo-Chuan Ho  King-Fu Lin
Affiliation:Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
Abstract:Ruthenium (II) complex dye, Ru(4,4'-dicarboxyl-2,2'-bipyridine)(4-nonyl-2,2'-bipyridine) (NCS)(2), (denoted as RuC9) tethering single alkyl chain was synthesized and well characterized. Its adsorption behavior onto the mesoporous TiO(2) and photovoltaic properties were compared with Z907 which has similar chemical structure but tethers two alkyl chains. RuC9 dyes tend to aggregate into vesicles in the acetonitrile/t-butanol co-solvent as a result of the amphiphilic structure, whereas Z907 dyes aggregate into lamellae. The dye-sensitized solar cell (DSSC) with RuC9 dye showed higher short-circuit photocurrent than that with Z907, attributing to its higher molar optical extinction coefficient and more adsorption amount onto the mesoporous TiO(2). However, the DSSC with Z907 dye has higher open-circuit photovoltage and power conversion efficiency, presumably due to the fact that Z907 with more alkyl chains formed a molecular layer with higher hydrophobicity. It reduced the charge recombination in the interface between the dye-sensitized mesoporous TiO(2) and electrolyte as verified by the electrochemical impedance spectroscopy and intensity modulated photocurrent and photovoltage spectroscopies.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号