首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A computational study of the thermochemistry of bromine- and iodine-containing methanes and methyl radicals
Authors:Marshall Paul  Srinivas G N  Schwartz M
Institution:Department of Chemistry, University of North Texas, P.O. Box 305070, Denton, Texas 76203-5070, USA. marshall@unt.edu
Abstract:Bromo- and iodomethanes and the corresponding halogenated methyl radicals have been investigated by ab initio methods. Geometries and vibrational frequencies were derived with quadratic configuration interaction methods at the QCISD/6-311G(d,p) level of theory, and energies via QCISD(T)/6-311+G(3df,2p). Core electrons were represented with relativistic effective potentials. Anharmonicity of the out-of-plane bending modes in the methyl radicals was taken into account by numerical integration of the Schr?dinger equation with potentials derived from relaxed scans of these modes. The results are in good accord with experimental data where available. Thermochemistry derived via isodesmic reactions referenced to CH3, CH4, and monohalomethanes yields excellent accord with new experiments on dihalomethanes and provides recommendations for the more poorly characterized tri- and tetrahalomethanes and halomethyl radicals. For the methanes CH2Br2, CHBr3, CBr4, CH2I2, CHI3, CI4, CH2BrI, CHBr2I, and CHBrI2 we compute DeltafH degrees (298) values of 4.3, 51.6, 110.6, 108.1, 208.5, 321.3, 56.8, 104.8, and 157.1 kJ mol(-1), respectively. For the methyl radicals CH2Br, CHBr2, CBr3, CH2I, CHI2, CI3, CHBrI, CBr2I, and CBrI2 we compute DeltafH degrees (298) values of 166.6, 191.7, 224.0, 217.2, 290.4, 369.1, 241.6, 320.8, and 272.3 kJ mol(-1), respectively. Recommended confidence limits are +/-3 kJ mol(-1) per Br or I atom. Trends in these values and the corresponding C-H bond strengths are discussed and compared with prior experiments, empirical estimation schemes, and ab initio calculations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号