首页 | 本学科首页   官方微博 | 高级检索  
     


Thermoelectrics from abundant chemical elements: high-performance nanostructured PbSe-PbS
Authors:Androulakis John  Todorov Iliya  He Jiaqing  Chung Duck-Young  Dravid Vinayak  Kanatzidis Mercouri
Affiliation:Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
Abstract:We report promising thermoelectric properties of the rock salt PbSe-PbS system which consists of chemical elements with high natural abundance. Doping with PbCl(2), excess Pb, and Bi gives n-type behavior without significantly perturbing the cation sublattice. Thus, despite the great extent of dissolution of PbS in PbSe, the transport properties in this system, such as carrier mobilities and power factors, are remarkably similar to those of pristine n-type PbSe in fractions as high as 16%. The unexpected finding is the presence of precipitates ~2-5 nm in size, revealed by transmission electron microscopy, that increase in density with increasing PbS concentration, in contrast to previous reports of the occurrence of a complete solid solution in this system. We report a marked impact of the observed nanostructuring on the lattice thermal conductivity, as highlighted by contrasting the experimental values (~1.3 W/mK) to those predicted by Klemens-Drabble theory at room temperature (~1.6 W/mK). Our thermal conductivity results show that, unlike in PbTe, optical phonon excitations in PbSe-PbS systems contribute to heat transport at all temperatures. We show that figures of merit reaching as high as ~1.2-1.3 at 900 K can be obtained, suggesting that large-scale applications with good conversion efficiencies are possible from systems based on abundant, inexpensive chemical elements.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号