首页 | 本学科首页   官方微博 | 高级检索  
     

基于兴趣区域掩码卷积神经网络的红外-可见光图像融合与目标识别算法研究
引用本文:郝永平,曹昭睿,白帆,孙颢洋,王兴,秦洁. 基于兴趣区域掩码卷积神经网络的红外-可见光图像融合与目标识别算法研究[J]. 光子学报, 2021, 50(2): 76-90
作者姓名:郝永平  曹昭睿  白帆  孙颢洋  王兴  秦洁
作者单位:沈阳理工大学 装备工程学院,沈阳 110159;沈阳理工大学 机械工程学院,沈阳 110159
基金项目:国防科技基础加强计划技术领域基金(No.2020-JCJQ-JJ-422);“十三五”装备预研兵器工业联合基金(No.6141B012841)。
摘    要:建立权重独立的双通道残差卷积神经网络,对可见光与红外频段下的目标图像进行特征提取,生成多尺度复合频段特征图组.基于像点间的欧式距离计算双频段特征图显著性,根据目标在不同成像频段下的特征贡献值进行自适应融合.通过热源能量池化核与视觉注意力机制,分别生成目标在双频段下的兴趣区域逻辑掩码并叠加在融合图像上,凸显目标特征并抑制...

关 键 词:卷积神经网络  注意力机制  图像融合  目标识别  多光谱成像

Research on Infrared Visible Image Fusion and Target Recognition Algorithm Based on Region of Interest Mask Convolution Neural Network
HAO Yongping,CAO Zhaorui,BAI Fan,SUN Haoyang,WANG Xing,QIN Jie. Research on Infrared Visible Image Fusion and Target Recognition Algorithm Based on Region of Interest Mask Convolution Neural Network[J]. Acta Photonica Sinica, 2021, 50(2): 76-90
Authors:HAO Yongping  CAO Zhaorui  BAI Fan  SUN Haoyang  WANG Xing  QIN Jie
Affiliation:(College of Equipment Engineering,Shenyang Ligong University,Shenyang 110159,China;College of Mechanical Engineering,Shenyang Ligong University,Shenyang 110159,China)
Abstract:A dual channel residual convolution neural network with independent weight is established.The features of target in visible and infrared images is extracted.The multi-scale composite frequency band feature maps are generated.Based on the Euclidean distance between image points,the saliency of each image point in the dual band feature map is calculated.The adaptive fusion is carried out according to the characteristic contribution value of the target in different imaging frequency bands.Through the thermal radiation pooling kernel and visual attention mechanism,the logical mask of the target region of interest under dual frequency band is generated and superimposed on the fusion image to highlight the target features and suppress the non target area.Based on end-to-end identification network and using the cross loss calculation strategy. The target recognition of multi-scale dual band fusion feature map with attentionmask is carried out. The results show that the designed recognition network can effectively integrate thephysical characteristics of infrared heat source and the line features of visible image. The depth ofinformation fusion is improved. The thermal radiation and texture features of the target is retained. Theinterference of background information is reduced. It has good recognition accuracy and robustness formulti-size heat source targets in all-weather and complex environment.
Keywords:Convolution neural network  Attention mechanism  Image fusion  Target recognition  Multispectral imaging
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号