首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ionic liquid based dispersive liquid-liquid microextraction combined with ICP-OES for the determination of trace quantities of cobalt, copper, manganese, nickel and zinc in environmental water samples
Authors:Leila Ranjbar  Yadollah Yamini  Abolfazl Saleh  Shahram Seidi  Mohammad Faraji
Institution:1. Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
Abstract:We describe a method for ionic liquid based dispersive liquid-liquid microextraction of Co(II), Cu(II), Mn(II), Ni(II) and Zn(II), followed by their determination via flow injection inductively coupled plasma optical emission spectrometry. The method is making use of the complexing agent 1-(2-thenoyl)-3,3,3-trifluoracetone, the ionic liquid 1-hexyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, and of ethanol as the dispersing solvent. After extraction and preconcentration, the sedimented ionic liquid (containing the target analytes) is collected, diluted with 1-propanol, and introduced to the ICP-OES. Effects of pH, ionic strength, ligand to metal molar ratio, volumes of extraction and disperser solvents on the performance of the microextraction were optimized in a half-fractional factorial design. The significant parameters were optimized using a face-centered central composite design. The method has detection limits between 0.10 and 0.20?ng?mL?1 of the metal ions, preconcentration factors between 79 and 102, linear responses in 0.25 to 200?ng?mL?1 concentration ranges, and relative standard deviations of 3.4 to 6.0%. The method was successfully applied to the analysis of drinking water, a fish farming pond water, and waste water from an industrial complex.
Figure
Ionic liquid based dispersive liquid-liquid microextraction of Co, Cu, Mn, Ni and Zn followed by determination via flow injection inductively coupled plasma optical emission spectrometry
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号