1. College of Chemistry and Chemical Engineering, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing, 400715, People’s Republic of China 2. Department of Chemistry, Third Military Medical University, Chongqing, 400038, People’s Republic of China
Abstract:
We report on a novel method for the determination of silver ion (Ag+) and cysteine (Cys) by using the probe SYBR Green I (SGI) and an Ag+-specific cytosine-rich oligonucleotide (C-DNA). The fluorescence of SGI is very weak in the absence or presence of randomly coiled C-DNA. If, however, C-DNA interacts with Ag+ through the formation of cytosine-Ag+-cytosine (C-Ag+-C) base pairs, the randomly coiled C-DNA undergoes a structural changes to form a hairpin-like structure, thereby increasing the fluorescence of SGI. This fluorescence turn-on process allows the detection of Ag+ in the 10–600?nM concentration range, with a detection limit of 4.3?nM. Upon the reaction of Ag+ with Cys, Cys specifically removes Ag+ from the C-Ag+-C base pairs and destroys the hairpin-like structure. This, in turn, results in a decrease in fluorescence intensity. This fluorescence turn-off process enables the determination of Cys in the 8–550?nM concentration range, with a detection limit of 4.5?nM. The method reported here for the determination of either Ag+ or Cys is simple, sensitive, and affordable, and may be applied to other detection systems if appropriately selected DNA sequences are available.
Figure
Sencitive and selective detection of Ag+ and cysteine based on fluorescence change of SYBR Green I