首页 | 本学科首页   官方微博 | 高级检索  
     


Particle-based multiscale coarse graining with density-dependent potentials: application to molecular crystals (hexahydro-1,3,5-trinitro-s-triazine)
Authors:Izvekov Sergei  Chung Peter W  Rice Betsy M
Affiliation:U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA. sergiy.izvyekov@us.army.mil
Abstract:We describe the development of isotropic particle-based coarse-grain models for crystalline hexahydro-1,3,5-trinitro-s-triazine (RDX). The coarse graining employs the recently proposed multiscale coarse-graining (MS-CG) method, which is a particle-based force-matching approach for deriving free-energy effective interaction potentials. Though one-site and four-site coarse-grain (CG) models were parameterized from atomistic simulations of non-ordered (molten and ambient temperature amorphous) systems, the focus of the paper is a detailed study of the one-site model with a brief recourse to the four-site model. To improve the ability of the one-site model to be applied to crystalline phases at various pressures, it was found necessary to include explicit dependence on a particle density, and a new theory of local density-dependent MS-CG potentials is subsequently presented. The density-dependency is implemented through interpolation of MS-CG force fields derived at a preselected set of reference densities. The computationally economical procedure for obtaining the reference force fields starting from the interaction at ambient density is also described. The one-site MS-CG model adequately describes the atomistic lattice structure of α-RDX at ambient and high pressures, elastic and vibrational properties, pressure-volume curve up to P = 10 GPa, and the melting temperature. In the molten state, the model reproduces the correct pair structure at different pressures as well as higher order correlations. The potential of the MS-CG model is further evaluated in simulations of shocked crystalline RDX.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号