首页 | 本学科首页   官方微博 | 高级检索  
     


Improved electrochemical performances of polyaniline nanotubes-poly-L-lysine composite for label-free impedance detection of DNA hybridization
Authors:Tao Yang  Chen Jiang  Wei Zhang  Kui Jiao
Affiliation:1. Key Laboratory of Eco-chemical Engineering, Ministry of Education; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
Abstract:A sensitive label-free DNA hybridization biosensing platform was fabricated based on the synergistic effect of polyaniline nanotubes (PANInt) and poly-L-lysine (pLys). The composite of pLys and PANInt was coated onto the carbon paste electrode (CPE) to form a uniform and very stable nanocomposite membrane. The pLys in the composite film not only acts as a membrane to retain good electron transfer capability of PANInt even at physiological pH, but also possesses fine biocompatibility for bio-analytes. DNA probes with negatively charged phosphate groups were readily linked to the positively charged pLys surface due to the strong electrostatic affinity. The synergistic effect of PANInt and pLys could significantly enhance the sensitivity of DNA hybridization recognition. The phosphinothricin acetyltransferase (PAT) gene fragment from transgenic corn and the polymerase chain reaction amplification of the terminator of nopaline synthase gene from the real sample of a kind of transgenic soybean were detected by this DNA electrochemical biosensor via label-free impedance method. This stable composite gives convenient permselectivity properties as a transducer material for the design of modern electrochemical impedance biosensor using [Fe(CN)6]3?/4? as an indicator.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号