首页 | 本学科首页   官方微博 | 高级检索  
     


Artificial Neural Network and Full Factorial Design Assisted AT-MRAM on Fe Oxides,Organic Materials,and Fe/Mn Oxides in Surficial Sediments
Authors:GAO Qian  WANG Zhi-zeng  WANG Qian  LI Shan-shan  LI Yu
Affiliation:Research Academy of Energy and Environmental Studies, North China Electric Power University, Beijing 102206, P. R. China
Abstract:Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments.
Keywords:Back propagation(BP) artificial neural network  Full factorial design  Fe/Mn oxide  Organic material  Atrazine  Interaction  
点击此处可从《高等学校化学研究》浏览原始摘要信息
点击此处可从《高等学校化学研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号