首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Water under temperature gradients: polarization effects and microscopic mechanisms of heat transfer
Authors:Muscatello Jordan  Römer Frank  Sala Jonás  Bresme Fernando
Institution:Chemical Physics Section, Department of Chemistry, Imperial College London, The Thomas Young Centre, London, UK.
Abstract:We report non-equilibrium molecular dynamics simulations (NEMD) of water under temperature gradients using a modified version of the central force model (MCFM). This model is very accurate in predicting the equation of state of water for a wide range of pressures and temperatures. We investigate the polarization response of water to thermal gradients, an effect that has been recently predicted using Non-Equilibrium Thermodynamics (NET) theory and computer simulations, as a function of the thermal gradient strength. We find that the polarization of the liquid varies linearly with the gradient strength, which indicates that the ratio of phenomenological coefficients regulating the coupling between the polarization response and the heat flux is independent of the gradient strength investigated. This notion supports the NET theoretical predictions. The coupling effect leading to the liquid polarization is fairly strong, leading to polarization fields of ~10(3-6) V m(-1) for gradients of ~10(5-8) K m(-1), hence confirming earlier estimates. Finally we employ our NEMD approach to investigate the microscopic mechanism of heat transfer in water. The image emerging from the computation and analysis of the internal energy fluxes is that the transfer of energy is dominated by intermolecular interactions. For the MCFM model, we find that the contribution from hydrogen and oxygen is different, with the hydrogen contribution being larger than that of oxygen.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号