首页 | 本学科首页   官方微博 | 高级检索  
     


WO3 Nanowire/Carbon Nanotube Interlayer as a Chemical Adsorption Mediator for High-Performance Lithium-Sulfur Batteries
Authors:Sang-Kyu Lee  Hun Kim  Sangin Bang  Seung-Taek Myung  Yang-Kook Sun
Affiliation:1.Department of Energy Engineering, Hanyang University, Seoul 04763, Korea; (S.-K.L.); (H.K.); (S.B.);2.Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul 05006, Korea
Abstract:We developed a new nanowire for enhancing the performance of lithium-sulfur batteries. In this study, we synthesized WO3 nanowires (WNWs) via a simple hydrothermal method. WNWs and one-dimensional materials are easily mixed with carbon nanotubes (CNTs) to form interlayers. The WNW interacts with lithium polysulfides through a thiosulfate mediator, retaining the lithium polysulfide near the cathode to increase the reaction kinetics. The lithium-sulfur cell achieves a very high initial discharge capacity of 1558 and 656 mAh g−1 at 0.1 and 3 C, respectively. Moreover, a cell with a high sulfur mass loading of 4.2 mg cm−2 still delivers a high capacity of 1136 mAh g−1 at a current density of 0.2 C and it showed a capacity of 939 mAh g−1 even after 100 cycles. The WNW/CNT interlayer maintains structural stability even after electrochemical testing. This excellent performance and structural stability are due to the chemical adsorption and catalytic effects of the thiosulfate mediator on WNW.
Keywords:lithium-sulfur batteries   tungsten oxide nanowire   interlayer   thiosulfate mediator
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号