首页 | 本学科首页   官方微博 | 高级检索  
     


Mxene-Based Supramolecular Composite Hydrogels for Antioxidant and Photothermal Antibacterial Activities
Authors:Zakia Riaz  Sravan Baddi  Fengli Gao  Chuan-Liang Feng
Affiliation:State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai, 200240 China
Abstract:Bacterial infections and oxidative damage caused by various reactive oxygen species (ROS) pose a significant threat to human health. It is highly desirable to find an ideal biomaterial system with broad spectrum antibacterial and antioxidant capabilities. A new supramolecular antibacterial and antioxidant composite hydrogel made of chiral L-phenylalanine-derivative (LPFEG) as matrix and Mxene (Ti3C2Tx) as filler material is presented. The noncovalent interactions (H-bonding and π–π interactions) in between LPFEG and Mxene and the inversion of LPFEG chirality are verified by Fourier transform infrared and circular dichroism spectroscopy. The composite hydrogels show improved mechanical properties revealed by rheological analysis. The composite hydrogel system exhibits photothermal conversion efficiency (40.79%), which enables effective photothermal broad-spectrum antibacterial activities against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Furthermore, the Mxene also enables the composite hydrogel to exhibit excellent antioxidant activity by efficiently scavenging free radicals like DPPH•, ABTS•+, and •OH. These results indicate that the Mxene-based chiral supramolecular composite hydrogel, with improved rheological, antibacterial, and antioxidant properties has a great potential for biomedical applications.
Keywords:antibacterial activity  antioxidant activity  chirality  composite supramolecular hydrogels  photothermal therapy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号