首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrochemical Characteristics and Electrosensing of an Antiviral Drug,Entecavir via Synergic Effect of Graphene Oxide Nanoribbons and Ceria Nanorods
Abstract:A sensitive electrochemical sensor was fabricated based on ceria‐graphene oxide nanoribbons composite (CeO2‐GONRs) for an antiviral drug, entecavir (ETV). It was characterized by SEM, EDAX, AFM, IR and Raman spectroscopic techniques. The electrochemical behaviour of ETV was investigated by cyclic voltammetric, differential pulse voltammetric (DPV), linear sweep voltammetric (LSV) and square wave voltammetric (SWV) methods at CeO2‐GONRs modified glassy carbon electrode. Good linearity was observed between the peak current and concentration of ETV in the range of 0.51 ‐ 100 μM with a detection limit of 0.042 μM in DPV method, 2.1 – 61.1 μM with a detection limit of 0.7 μM in LSV method and 0.1 ‐ 80 μM with a detection limit of 68.1 nM in SWV method. The proposed sensitive DPV method was successfully applied for the determination ETV in tablets and biological samples.
Keywords:Entecavir  CeO2-GONRs  electrochemical sensor  analytical application
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号