首页 | 本学科首页   官方微博 | 高级检索  
     


Computerized implementation of higher‐order electron‐correlation methods and their linear‐scaling divide‐and‐conquer extensions
Abstract:We have implemented a linear‐scaling divide‐and‐conquer (DC)‐based higher‐order coupled‐cluster (CC) and Møller–Plesset perturbation theories (MPPT) as well as their combinations automatically by means of the tensor contraction engine, which is a computerized symbolic algebra system. The DC‐based energy expressions of the standard CC and MPPT methods and the CC methods augmented with a perturbation correction were proposed for up to high excitation orders [e.g., CCSDTQ, MP4, and CCSD(2)TQ]. The numerical assessment for hydrogen halide chains, polyene chains, and first coordination sphere (C1) model of photoactive yellow protein has revealed that the DC‐based correlation methods provide reliable correlation energies with significantly less computational cost than that of the conventional implementations. © 2017 Wiley Periodicals, Inc.
Keywords:electron‐correlation theory  linear‐scaling  divide‐and‐conquer method  tensor contraction engine
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号